上、下极限相等,是数列收敛的充要条件,这个知识关注的人本来就不多了。没想到吧!连上、下极限本身,也是有充要条件的。而且还不止一个,有界数列上、下极限的ε-N充要条件。定理的内容是这样的:
定理:设{xn}为有界数列,则任给ε>0,
1、A ̅为{xn}的上极限的充要条件是:
(1)存在N>0,使得当n>N时,有xn<A ̅+ε;
(2)存在子列{x_(nk )}, x_(nk )>A ̅-ε, k=1,2,….
2、▁A为{xn}的下极限的充要条件是:
(1)存在N>0,使得当n>N时,有xn>▁A-ε;
(2)存在子列{x_(nk )}, x_(nk )<▁A+ε, k=1,2,….
下面老黄为你解读证明:(这里只证上极限的充要条件,下极限的充要条件同理,或直接取相反数列得证)
证明:[必要性]∵A ̅是{xn}的聚点,【先证必要性,就是假设上极限,证明条件(1)(2)都成立。首先,上极限是一个聚点】
∴对任给的ε>0,在U(A ̅,ε)内含有{xn}中无穷多项,【这是聚点的定义】
设为{x_(nk )},则有x_(nk )>A ̅-ε, k=1,2,….【这无穷多个项记为一个子列,子列中的所有项都在U(A ̅,ε)内,自然大于邻域的左端点,条件(2)得证】
又A ̅是{xn}的最大聚点,∴在A ̅+ε的右边至多只有{xn}的有限个项,【反之如果A ̅+ε的右边存在{xn}的无限多个项,那么在A ̅的右边就必有更大的聚点】
设此有限项的最大下标为N,则当n>N时,有xn<A ̅+ε.【条件(1)得证】
证明: [充分性]任给的ε>0,由条件(1)和(2)可知,【再证充分性,就是假设条件(1)(2)都成立,证明上极限。】
在U(A ̅,ε)内含有{xn}中无穷多项,∴A ̅是{xn}的一个聚点.【这是聚点的定义】
又设a>A ̅. 记ε0=1/2(a-A ̅),【用反证法,假设有更大的聚点】
则由条件(1)可知,在U(a,ε0)内至多只有{xn}的有限个项,【与聚点的定义矛盾】
∴a不是{xn}的聚点,即A ̅是{xn}的最大聚点. ∴A ̅是{xn}的上极限.【最大聚点是上极限的定义】
这个定理还有一个等价定理,被使用得更多:
设{xn}为有界数列,则
1、A ̅为{xn}的上极限的充要条件是:对任何a>A ̅,{xn}中大于a的项至多有限个;对任何b<A ̅,{xn}中大于b的项有无限多个;
2、▁A为{xn}的下极限的充要条件是:对任何b<▁A,{xn}中小于b的项至多有限个;对任何a>▁A,{xn}中小于a的项有无限多个.
天然纤维是自然界存在的、可以直接获得的纤维,天然纤维又可分为植物纤维、动物纤维和矿物质纤维三种。像我们常看到衣服上商标注明的有,面料含有成份是百分之几的棉、石棉、木棉、亚麻、麻、罗布麻、羊毛、山羊绒、驼毛、兔毛、桑蚕丝等;化学纤维是指由人工加工制造成的纤维状物体,又可分人造纤维(就是再生纤维)和合成
被列为日本非物质文化遗产的和服可以称得上是日本文化的代表之一。在日本的街头经常可以看到一些穿着美丽和服的女子。看似很简单的和服,其实从每一个和服的配件,到腰带的系法都有着他的讲究。如果感兴趣还可以尝试穿一下日本的木屐,学习一下日本人走路的方式,绝对是一种不错的体验。看似简单的和服,其实它有很多分类,